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SOLUTION OF ELASTOPLASTIC TORSION PROBLEM

BY BOUNDARY INTEGRAL METHOD

by Alexander Mendelson

Lewis Research Center

SUMMARY

The boundary integral method was applied to the elastoplastic analysis of the torsion

of prismatic bars. The boundary of the bar cross section was divided into n intervals,
and the unknown warping function was assumed constant over each interval. Since the

unknowns of the problem appear only on the boundary, the dimensions of the problem

are reduced effectively by one.

Numerical results were obtained for a bar with a square cross section, and com-

parisons were made with results obtained by the finite difference method. Very good

accuracy was obtained using relatively small sets of linear algebraic equations. The

convergence rate for the elastoplastic problem was also much faster using the boundary

integral method than using the finite difference method. This should be reflected in an7

appreciable savings in computer time. The method can be readily programmed for a

digital computer for both simply and multiply connected bodies.

INTRODUCTION

The problem of elastic torsion of prismatic bars is one of the classical problems of

mechanics and as such has received extensive treatment. With the advent of the high

speed digital computer the corresponding elastoplastic problem has also come to the

forefront.

The usual solutions to the elastoplastic torsion problem assume perfect plasticity

and are very often limited to cases in which the complete cross section is plastic, be-

cause the elastoplastic boundary is considered difficult to find. Recently, general solu-

tions have been presented by the author (refs. 1 and 2) using finite differences and the

method of elastic solutions and by Herakovich (refs. 3 and 4) using a minimum rate

principle of plasticity in conjunction with nonlinear programming. In reference 4



Herakovich compares his results with those of reference 2 and concludes that the mini-

mum rate principle would require a great many more finite elements for its implemen-

tation in order to approach the accuracy of the finite difference method.

More recently a great deal of interest has been aroused by a new approach involving

boundary integral techniques to solve elastic and elastoplastic problems. A general

review of the boundary integral techniques is presented in reference 5. The first

numerical application of these techniques to an elastoplastic problem involving a notched

beam in bending is described in reference 6. A major advantage of these techniques is

that a problem need only be solved for the unknowns on the boundary of the cross section

of the body. This effectively reduces the dimensions of the problem by one.

The development of the theory of the boundary integral method to the torsion prob-

lem is described in general terms in reference 5. The purpose of the present report is

to show specifically how the theory is applied to the elastoplastic torsion of bars of any

geometry. Numerical computations are presented for bars having square cross sec-

tions. Comparisons are made for the elastic case with the known analytical solution and

for the elastoplastic case with the finite difference solution.

METHOD OF ANALYSIS

The elastoplastic torsion problem can be formulated in several ways as shown in

reference 5. In particular, for example, it is shown in reference 5 that by formulating

the problem in terms of a stress function a closed form solution can be obtained for a

circular bar with linear strain hardening. In general, however, it would seem that a

formulation in terms of the warping function should be preferable, since the warping

function (axial displacement) is physically more meaningful than the stress function and,

more importantly, the distinction between simply connected and multiply connected re-

gions disappears (ref. 7). The warping function formulation was therefore used herein.

Basic Equations

The basic equations necessary for the formulation to be used are as follows (see

fig. 1 for the coordinate system):

Equilibrium equation:

axz 7yz
- + = 0 (1)
ax ay
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where 7xz and 7y z are the shear stresses acting on the cross section.

Stress-strain relations:

7xz = 2G(Ex -

(2)

yz G(yz - E yz

where G is the shear modulus, exz and E are the total (tensor) strains, and EP

and E are the plastic shear strains. It should be noted that equation (2) implies using
yz

the deformation theory of plasticity. However, as shown in reference 8, both the total

and incremental theories of plasticity furnish the same solution to the torsion problem

provided either the cross section is circular or the material is perfectly plastic. It is

reasonable to assume, therefore, that this will be approximately true for most practical

problems. Indeed, it has been shown by Huth in reference 9 that for the case of a square

cross section with strain hardening there is little difference between incremental and

deformation theories. In what follows, therefore, use will be made of the deformation

or total theories of plasticity, and the load will be assumed to be applied in one step.

The use of incremental theories does not appreciably complicate the problem, and the

necessary formulation is given in reference 2 for those desiring to use it.

Saint-Venant relations:

C 1-ay + awxz 2\ ax
(3)

E y = ax + ayz 2y

where a is the angle of twist per unit length and w the warping function (the axial dis-

placement).
Substituting equation (3) into equation (2) and the resulting equation into equation (1)

result in

a2 w a2 w
+ = F(x, y) (4a)

ax2  ay2

where

F(x, y) - 2 + z (4b)
\ ax ay
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The plastic strains appearing in the definition of the function F(x, y) are of course

in turn nonlinear functions of warping function w. They can be determined from (ref. 1)

Exz xz
Eet

(5)

p_ Ep
yz yz

et

where

2 2 (yz)2 (6a)

and

Ep = f(Eet) (6b)

Equation (6b) represents the uniaxial stress-strain curve in terms of equivalent plastic

strain against equivalent total strain; that is,

Ep = et - (6c)

where ce, the equivalent stress, represents the stress on the uniaxial stress-strain

curve and Ep the plastic strain on that curve. Thus, for a given stress-strain curve,
the relation between Ep and Eet represented by equation (6b) can be determined using

equation (6c). For the case of linear strain hardening, the relation (6b) can be written

as

2 CoE et - (1 + 1)

E = 3 E (6d)

1+2 (1+ ) m
3 1-m
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where a. is the yield stress, p. Poisson's ratio, and m the linear strain hardening
parameter (i. e., the ratio of the slope of the linear strain hardening line to the elastic

modulus).

Boundary Conditions

The boundary conditions for an unloaded lateral surface are given by

17xz + mTyz = 0 (7)

where 1 and m are the direction cosines of the external normal to the surface with

respect to the x and y axes, respectively. Substituting equations (2) and (3) into equa-

tion (7) and making use of the relation

aw aw aw1 +m w
ax ay , an

result in

a=w' = a(ly - mx)+ 2(lEP + mEP ) (8)
an

where w' is the outward normal derivative of the warping function w at the boundary of

the surface. For a rectangular boundary parallel to one of the coordinate axes, the sec-

ond term on the right side of equation (8) vanishes. This follows from the fact that if

1 =0, then Ez = 0, and if m =0, then E z =0.
yz xz

Boundary Integral Formulation

The differential equation (4a) can be readily converted to a boundary integral equa-

tion by using Green's second theorem as shown in reference 5. The resultant equation
is

w(p)=F(Q)lnrpQdA+ w(q) (In rpq) dq- 1 w'(q) ln rpq dq

(9)
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The notation in equation (9) is fully described in figure 2. The capital letters P and Q

denote interior points while the lower case letters p and q denote boundary points.

Thus, for example, rpQ represents the distance between the boundary point p and the

interior point Q. The outward normal derivative at the boundary point q is a/nq'
The same equation applies for a point P in the interior of the region R except that the

right side of the equation is divided by 2; that is,

w(P) = - F(Q) In rpQ dA + f w(q)- (In rpq) dq - w ' (q ) I n rpqdq

(10)

In equation (9), the normal derivative w'(q) is known from equation (8). If we

assume that the function F defined by equation (4b) is also known, then equation (9)

represents an integral equation for the unknown function w(q) on the boundary C of the

region R. Once this integral equation is solved for w(q), the warping function w can

be calculated at any interior point P by direct quadrature using equation (10).

Actually, however, the function F(Q) is not known to start with, since it is a func-

tion of the plastic strains which are determined as part of the solution. However, F(Q)

can be determined by an iterative process. First, equation (9) is solved for an arbi-

trary distribution (say zero) of F(Q). Then w(P) is calculated in the interior of the

region by means of equation (10). The total strains are computed from equation (3), and

the plastic strains are computed by means of equations (5) and (6). A better approxima-

tion to the function F is then obtained from equation (4b). Equation (9) is now re-

solved, and the process is repeated until convergence is obtained.

Numerical Procedure

To solve equation (9) for the unknown function w(p), the straightforward procedure

of replacing the integrals by summations can be used. The boundary is divided into n

intervals with a nodal point taken at the center of each interval. The unknown function is

assumed constant over each interval. Similarly, the region R is divided into a number

of cells and the function F assumed constant over each cell. Equation (9) is then

written for each nodal point as follows:

n n

S(aij - ij)w j =~ bijw + Ri  i = 1, 2,. .,n (11)

j=1 j=1



where 6ij is the Kronecker delta (equal to 0 when i * j and equal to 1 when i = j).
The coefficients ai , bij , and Ri are given in the appendix. We thus have n equations
for the n unknowns wj. This set of equations can readily be solved by any standard

procedure.

Once the wj are known on the boundary, equation (10) can be used to calculate w
at any interior point. However, as can be seen from equation (3), although w is not
really needed to calculate the strains, its derivatives are. To determine the derivatives
of w, equation (10) can be differentiated directly to give

aw(P) 1 F(Q)x dXQ
ax 2 2dyQ

+ 2 w( X) [ )2( (yp - yq)2]q+ 2(xp - Xq)(Yp Yq)mq dq

rpq

w Xp -x
(q) - q dq (12)

C~q

For aw(P)/ay we interchange x and y.

Again we replace the integrals by sums and write

aw(x = 2- ) (wklkAijk + WkmkBijk - wkCijk) + FklDijkl (13)
ax 2 k=1i k, 1

where the coefficients Aijk , Bijk Cijk and Dijkl are listed in the appendix, 1k and

mk are the direction cosines of the normal at the kth boundary interval, and E is
the sum for all the plastic cells in the region. k, 1

When the derivatives of w are used, the total strains are computed from equa-
tion (3), the plastic strains from equation (5) and (6), and the function F from equa-
tion (4b). The process is then repeated until convergence is obtained. The degree of
convergence can be determined from a relation of the form
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M

EZ E k(P)-E (Pi) <K (14)
i=

where M is the total number of points Pi flowing plastically and k-1 and k are two

successive iterations. The convergence criterion K can be made as small as desired.

For the calculations reported herein values of 10- 4 and 10- 5 were used for K.

For a cross section symmetric about one or both of the coordinate axes, advantage

can be taken of the symmetries (or antisymmetries) to reduce the number of unknowns.

For example, for the square plate for which calculations are reported herein, symmetry

exists not only about the x and y axes, but also about the diagonals. Therefore, it is

necessary to consider only the boundary between A and B (fig. 3) since the values of w

are the same along AB, CD, EF, and GH, and these are the negatives of the values

along CB, ED, GF, and AH. Similarly, the function F, defined by equation (4b), is

antisymmetric with respect to both the x and y axes.

RESULTS AND DISCUSSION

Calculations were performed by the previous technique for a bar of square cross

section as shown in figure 3. The dimensionless angle of twist per unit length 0, de-

fined as aa/Eo (where Eo is the yield strain and a is 1/2 the side of the square), was

increased in steps of one from p = 1 to / = 6. Linear strain hardening was assumed

with values of the strain hardening parameter taken as 0 (perfect plasticity), 0. 05, 0. 1,

and 0. 2. Poisson's ratio was assumed as 0. 3 in all calculations.

For p = 1, the bar is elastic and a comparison was made between the analytical

solution as given, for example, in reference 7 as well as with the finite difference solu-

tion of reference 2. The results are shown in tables I to m. Table I shows the warping

function as computed on the boundary of the bar cross section. The comparison with the

analytical solution of reference 7 shows very good agreement with just 4 unknowns to

solve for in the boundary integral method. The analytical solution of reference 7 uses

an infinite series of which 30 terms were summed. Summing 50 terms did not change

the answers to 5 significant figures. The warping function was not computed in refer-

ence 2.

Table II shows the comparison for the maximum shear stress (at the center of the

edge of the square) and the moment with the analytical solution of reference 7 and the

finite difference solution of reference 2. Again it is seen that with just 4 unknowns in

the boundary integral method very good results are obtained, as good as the results ob-

tained for the finite difference method using 55 unknowns.
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Table m presents the dimensionless shear stress distribution in the x-direction

(T x - xz/2GEo ) throughout the cross section using 10 unknowns for the boundary integral
method and 55 unknowns for the finite difference method. Again excellent agreement

was obtained. Actually, the results with 4 unknowns using the boundary integral method

are almost as good, but the results with 10 unknowns are presented to match the actual

(x, y) values of the finite difference results without having to cross plot.

The dimensionless angle of twist per unit length P was then increased in unit steps

to a maximum value of p = 6 for each value of the strain hardening parameter m. The

total boundary was divided into 80 intervals resulting in 10 equations for 10 unknowns.

Several test calculations were made with fewer intervals, and the results indicated that

using 48 intervals (6 unknowns) changed the moment and maximum stress by at most one

in the third significant figure and changed the maximum plastic strain by about 3 percent.

All the subsequent results are therefore shown for 80 intervals (10 unknowns), although

from an engineering viewpoint 48 or even 32 intervals would be sufficient.

The results of the calculations are summarized in table IV and figures 4 to 6. Fig-

ure 4 shows the dimensionless moment defined as M* - M/(2GE a ) for various values

of 0 and m. Figure 5 shows the corresponding dimensionless maximum shear

stresses defined as

Tmax 2G
2GE

o

and figure 6 shows the spread of the plastic zones with an increase of the angle of

twist 0.
In all the calculations the convergence number K of equation (14) was taken either

as 0. 0001 or 0. 00001. In many of the calculations both numbers were used in turn. The

differences in the results were found to be insignificant. For example, the number of

iterations for convergence for the case of maximum plastic flow, which occurred for

/ = 6 and m = 0, was 39 for K = 0. 0001 and 53 for K = 0. 00001, and the results were

all the same to at least three significant figures. For the case )3 = 5 and m = 0, the

number of iterations for K = 0. 0001 was 33. For the same case using finite differences,
203 iterations were required.

CONCLUDING REMARKS

The boundary integral method was found to be very suitable for the elastoplastic

analysis of the torsion of prismatic bars. Very good accuracy can be obtained by using

relatively small sets of linear algebraic equations.

9



A comparison with the finite difference method indicates a great savings in the num-

ber of unknowns that have to be determined and also a much faster convergence rate

using the method of successive elastic solutions for both formulations. This should be

reflected in appreciable savings in computer time.

The boundary integral method can readily be programmed in a straightforward man-

ner for a digital computer. The use of the warping function to formulate the problem

permits applying the method with equal ease to both simply connected and multiply con-

nected bodies.

Lewis Research Center,
National Aeronautics and Space Administration,

Cleveland, Ohio, October 30, 1974,
505-01.
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APPENDIX - BOUNDARY INTEGRAL COEFFICIENTS

The division of the boundary into intervals with their corresponding nodal points is

shown in figure 7. The x and y coordinates of a boundary nodal point pi are desig-

nated as (xbi, Ybi ) . The coordinates at the beginning and end of an interval (say interval

j) are designated by (j, 77j) at the beginning of the interval and by (Qj+l' qj+l ) at the end

of the interval. The interval lengths h. need not be equal. The coordinates of the cen-

troid of an interior cell where plastic flow occurs are designated by (xk, x 1).

The coefficients in equation (11) are then given by

ij qj+(1/2) (n dq
a.. - (ln r ) dq

13 an piq

- (1/2)

Sh (xbj - xbi)j + (Ybj - Ybi)mj j 1 (Al)
2

aii =n- aik
ko1

The last relation follows from the Gaussian condition (ref. 10); that is,

In r q dq = rr

To evaluate the bij coefficients Simpson's rule is used for the case i € j and

closed form integration is used for the case i = j since the integrand is singular for

i = j. The result is

h.bij =6 In i,j-(1/2) + 4 In rij + In ri,j+(1/2)] i j

(A2)

bii = hi -

11



Ri =-Z Fkl In rikZ AAkZ (A3)

k, I

where k is the sum for all the plastic cells in the region and AAkl is the area of
k, I

the cell with coordinates (xk, Y ).

The coefficients Aijk, Bijk, Cijk, and Dijkl are given as follows using Simpson's
rule:

A hk (x i - )2  (yj- k)2 + (xi - Xbk) 2 - (yj - Ybk 2

ijk 6 4 4
ij, k- (1/2) rijk

(xi - k+1)2 - - k+2

+ 2 (A4)

ij, k+ (1/2)

-"k i - sk kj 'k i - x bk bk)  (xi- bk+ )(Yj - k+lBijk +3 '4bk 4 r4 + 43 4 4  4
ijk ij, k+(1/2)

hk xi ik xi-Xbk xi k+l

6 r2 r2 r2
ij, k- (1/2) ijk ij, k+(1/2)

Dijkl = (A7)
(xi - xk2 + (yj y)2
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TABLE I. - COMPARISON OF VALUES OF DIMENSIONLESS WARPING FUNCTION ON BOUNDARY

OF ELASTIC SQUARE PLATE WITH EXACT ELASTIC SOLUTION

Boundary Exact Value of warping function by Boundary Exact Value of warping function by

value, warping boundary integral method value, warping boundary integral method

y function, y function,
Intervals, n w Intervals, n

4 8 12 16 4 8 12 16

0.03125 0.01095 0.01095 0.4313 0.1424 0.1424

.04167 .01459 0.01459 .5417 .1433 0.1433

.0625 .02185 0.02184 .5625 .1448 0.1446

.09375 .03264 .03264 .5938 .1461 .1460

.1250 .04328 0.04311 .04328 .6250 .1461 0.1446 .1461

.1563 .05374 .05372 .6563 .1449 .1449

.1875 .06390 .06386 .6875 .1422 .1419

.2083 .07050 .07051 .7083 .1396 .1395

.2188 .07380 .07377 .7188 .1380 .1380

.2813 .09235 .09234 .7813 .1244 .1244

.2917 .09527 .09525 .7917 .1214 .1212

.3125 .1009 .1009 .8125 .1148 .1140

.3438 .1090 .1090 .8438 .1029 .1027

.3750 .1165 -1159 ..11, .8750 .08864 .08826 .08811

.4063 .1233 .1232 .9063 .07166 .07129

.4375 .1293 .1292 .9375 .05169 .05142

.4583 .1329 .1329 .9583 .03644 .03621

.4688 .1346 .1346 .9688 .02808 .02796

TABLE II. - COMPARISON OF ELASTIC SOLUTIONS FOR MAXIMUM

DIMENSIONLESS SHEAR STRESS AND DIMENSIONLESS

MOMENT FOR SQUARE BAR

Exact solution Finite difference Boundary integral method

method

(55 eqs. ) Intervals, n

4 8

Dimensionless moment, M* 1. 125 1. 122 1. 128 1. 127

Dimensionless maximum .6754 .6725 .6724 .6747

shear stress, Tmax
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TABLE III. - COMPARISON OF ELASTIC SOLUTIONS

FOR DIMENSIONLESS x DIRECTIONAL SHEAR

STRESS DISTRIBUTION 7

[First number, exact; second, boundary integral

method; third, finite difference method.]

y x

0 0.2 0.4 0.6 0.8 1.0

Elastic solutions

1.0 0.675 0.658 0.605 0.507 0.342 0

.675 .658 .605 .506 .339

.671 .654 .600 .500 .330

0.8 0.492 0.476 0.427 0.338 0.198 0

.492 .476 .427 .338 .199

.492 .476 .428 .339 .200

0.6 0.339 0.326 0.287 0.219 0. 121 0

.339 .326 .287 .220 .122

.340 .327 .288 .220 .123

0.4 0.212 0.203 0. 176 0.132 0.0714 0

.212 .203 .177 .132 .0717

.212 .203 .177 .133 .0720

0.2 0.101 0.0971 0.0839 0.0623 0.0333

.101 .0971 .0840 .0624 .0335 0

.102 .0973 .0842 .0626 .0336
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TABLE IV. - SUMMARY OF RESULTS FOR TORSION

OF SQUARE PRISMATIC BAR

Linear Dimensionless Dimensionless Maximum Maximum

strain- angle of twist moment, dimensionless dimensionless

hardening per unit M* shear stress, strain,

parameter, length, Tmax Pmax
m __m 13 yImax

E
o

0 2 1.81 0.751 0.792

3 1.96 1.70

4 2.02 2.57

5 2.06 3.42

6 2.08 4.25

0.05 2 1.83 0.784 0.758

3 2.04 .822 1.57

4 2.15 .852 2.35

5 2.24 .893 3.12

6 2.31 .926 3.85

0.10 2 1.85 0.817 0.687

32.11 .890 i.45

4 2.27 .960 2.17

5 2.41 1.03 2.86

6 2.53 1.09 3.52

0.20 2 1.90 0.879 0.593

3 2.25 1.02 1.24

4 2.51 1. 15 1.85

5 2.74 1.28 2.43

6 2.95 1.40 3.00

dn
dq

1/ dz

I/ t,<dz R PQ

xP

Figure 1. - Prismatic bar subject to twisting couple. C

Figure 2. - Region R, boundary curve c, and
geometric quantities entering into boundary
integrals.
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4.8

y
4.0 - Strain-hardening

C parameter,
D B m 1.0

/ :: 3.2 -
I .22
E

S2.4

1.6

/ I .8

F G H

Figure1 2 3 4 5 6
Figure 3. - Square cross section. Dimensionless of angle of twist per unit length, P

Figure 4. - Variation of dimensionless moment with dimensionless

angle of twist per unit length for several values of strain-hardening
parameter for square cross section.

2.4

2.0 Strain-hardening O Finite difference
parameter, (ref. 2)

Sm 1.0

1.6--

E .2
S1.2

.8 .1
0

0 1 2 3 4 5 6
Dimensionless angle of twist per unit length, 13

Figure 5. - Variation of dimensionless maximum shear stress with
dimensionless angle of twist per unit length for several values of
strain-hardening parameter for square cross section.
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Dimensionless angle of twist
per unit length,

2

3
4

6

6
4

3

2

0 a

Figure 6. - Piasiic zone boundaries in quadrant of square cross section as func-
tion of dimensionless angle of twist per unit length for strain-hardening pa-
rameter, 0.1.

y

qj ( 1q2) j+ j1 7 q - qj(12)( j, j)

rij

~qJ kt l)Ir Pi(xbi, Ybi )

rkl, m+(112) :

Figure 7. - Boundary and interior rotation for computing co-
efficients given in appendix.
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